Using the state-space separable cohort model modification for assessment of Pacific cod Gadus macrocephalus (Gadidae) stocks in the Petropavlovsk-Komandorskaya subzone
https://doi.org/10.15853/2072-8212.2024.75.53-66
EDN: JNBIHG
Abstract
Results of using a state-space cohort model with smoothing unscented Kalman filter for assessment of Pacific cod stock abundance and the other population parameters in the Petropavlovsk-Komandorskaya Subzone are presented. Series of numerical experiments were carried out with various variants of the recruitment model. The results of the work performed can be used in preparing forecasts of the TAC of marine commercial fish in terms that the observational data allow the use of age-structured models in the state space.
About the Authors
D. A. TerentyevRussian Federation
Dmitry A. Terentyev – Ph. D. (Biology), Leading Researcher
Petropavlovsk-Kamchatsky
O. I. Ilin
Russian Federation
Oleg I. Ilin – Ph. D. in Physics and Mathematics, Leading Researcher
Petropavlovsk-Kamchatsky
References
1. Antonov N.P. Cod Gadus macrocephalus of Kamchatka waters. Pacifi c cod of the Far Eastern waters of Russia (Ed. Orlov A.M.). Moscow: VNIRO, 2014, pp. 151–158. (In Russ.)
2. Ilin O.I. On application of Kalman filters in cohort models. Izvestiya TINRO, 2022, vol. 202 (3), pp. 601–622. (In Russ.) EDN: FWGTMH. https://doi.org/10.26428/1606-9919-2022-202-601-622
3. Ilyin O.I., Varkentin A.I., Smirnov A.V. On one model approach to assessment of state for the stock of walleye pollock Theragra chalcogramma in the Northern Okhotsk Sea. Izvestiya TINRO, 2016, vol. 186, pp. 107–117. (In Russ.) EDN: WRJDJJ.
4. Ilyin O.I., Sergeeva N.P., Varkentin A.I. East-Kamchatka walleye pollock (Theragra chalcogramma) stock and TAC assessment based on the precautionary approach. Trudy VNIRO, 2014, vol. 151 pp. 62– 74. (In Russ.) EDN: TFVZUT.
5. Regulations on the functioning of the industry hierarchical information and analytical automated management system for the use of aquatic bioresources. Appendix to the order of the State Fisheries Committee of Russia dated 10.10.1996 No. 185. M. 78 p.
6. Russian food market (No. 1/2024). Situation on the Russian fish market. Problems and growth drivers. https://foodmarket.spb.ru/archive/2024/222980/222991.
7. Terentyev D.A., Vasilets P.M., Matveev A.A. The catch structure based setting the multispecies fi shery in different types of fi shing in the Petropavlovsk-Commander subzone in 2003–2017. The researches of the aquatic biological resources of Kamchatka and the north-west part of the Pacifi c Ocean, 2019, vol. 53, pp. 5–21. (In Russ.) EDN: IEPMDQ. doi:10.15853/2072-8212.2019.53.5-21
8. Terentiev D.A., Vinnikov V.A., Zolotov A.O., Sergeeva N.P. Fishery and longterm dynamic stock of Pacifi c Cod Gadus macrocephalus in waters of Kamchatka. The researches of the aquatic biological resources of Kamchatka and the north-west part of the Pacifi c Ocean, 2010, vol. 16, pp. 107–116. (In Russ.). EDN: MWFACX.
9. Top 6 types of exported fi sh products from Russia based on the results of January-July 2023. https://www.fishnet.ru/news/rynok/top-6-vidov-eksportnoy-ryboprodukcii-iz-rossii-po-itogam-yanvaryaiyulya-2023-goda.
10. Berg C.W., Nielsen A. Accounting for correlated observations in an age-based state-space stock assessment model. ICES J. of Marine Science, 2016, vol. 73 (7), pp. 1788–1797. doi:10.1093/icesjms/fsw046
11. Berg C.W., Nielsen A., Kristensen K. Evaluation of alternative age-based method for estimating relative abundance from survey data in relation to assessment models. Fisheries Research, 2014, vol. 151, pp. 91–99. URL: https://doi.org/10.1016/j.fishres.2013.10.005
12. Cadigan N.G. A state-space stock assessment model for northern cod, including under-reported catches and variable natural mortality rates. Canadian J. of Fisheries and Aquatic Sciences, 2015, vol. 73, pp. 296–308.
13. Gudmundsson G. Time series analysis of catch-atage observations. J. of the Royal Statistical Society: Series C (Applied Statistics), 1994, vol. 43, pp. 117– 126. doi:10.2307/2986116
14. Gudmundsson G., Gunnlaugsson T. Selection and estimation of sequentialcatch-at-age models. Canadian J. of Fisheries and Aquatic Sciences, 2012, vol. 69, pp. 1760. doi:10.1139/f2012-095
15. Hurtado-Ferro F., Szuwalski C.S., Valero J.L., Anderson S.C., Cunningham C.J., Johnson K.F., Licandeo R., McGilliard C.R., Monnahan C.C., Muradian M.L., Ono K., Vert-Pre K.A., Whitten A.R., Punt A.E. Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock assessment models. ICES J. of Marine Science, 2015, vol. 72, pp. 99–110. doi:10.1093/icesjms/fsu198
16. Julier S.J., Uhlmann J.K., Durrant-Whyte H. A new approach for fi ltering nonlinear systems. Proc. of the “American Control Conference”. Seattle, WA. 1995, pp. 1628–1632.
17. Mohn R. The retrospective problem in sequential population analysis: an investigation using cod fi shery and simulated data. ICES J. of Marine Science, 1999, vol. 56, pp. 473–488. doi:10.1006/jmsc.1999.0481
18. Nielsen A., Berg C.W. Estimation of time-varying selectivity in stock assessments using state-space models. Fisheries Research, 2014, vol. 158, pp. 96– 101. doi:10.1016/j.fishres.2014.01.014
19. Nielsen A., Hintzen, N.T., Mosegaard H., TrijouletV., Berg C.W. Multi-fl eet state-space assessment model strengthens confi dence in single-fl eet SAM and provides fl eet-specifi c forecast options. ICES J. of Marine Science, 2021, vol. 78(6), pp. 2043–2052. EDN: HCTVNO. doi:10.1093/icesjms/fsab078
20. Särkkä S., Hartikainen J. 2010. On Gaussian optimal smoothing of nonlinear state space models. IEEE Transactions on Automatic Control, 2010, vol. 55 (8), pp. 1938–1941. doi:10.1109/TAC.2010.2050017
Review
For citations:
Terentyev D.A., Ilin O.I. Using the state-space separable cohort model modification for assessment of Pacific cod Gadus macrocephalus (Gadidae) stocks in the Petropavlovsk-Komandorskaya subzone. The researches of the aquatic biological resources of Kamchatka and the North-West Part of the Pacific Ocean. 2024;(75):53-66. (In Russ.) https://doi.org/10.15853/2072-8212.2024.75.53-66. EDN: JNBIHG